Movement-related beta oscillations show high intra-individual reliability
نویسندگان
چکیده
Oscillatory activity in the beta frequency range (15-30Hz) recorded from human sensorimotor cortex is of increasing interest as a putative biomarker of motor system function and dysfunction. Despite its increasing use in basic and clinical research, surprisingly little is known about the test-retest reliability of spectral power and peak frequency measures of beta oscillatory signals from sensorimotor cortex. Establishing that these beta measures are stable over time in healthy populations is a necessary precursor to their use in the clinic. Here, we used scalp electroencephalography (EEG) to evaluate intra-individual reliability of beta-band oscillations over six sessions, focusing on changes in beta activity during movement (Movement-Related Beta Desynchronization, MRBD) and after movement termination (Post-Movement Beta Rebound, PMBR). Subjects performed visually-cued unimanual wrist flexion and extension. We assessed Intraclass Correlation Coefficients (ICC) and between-session correlations for spectral power and peak frequency measures of movement-related and resting beta activity. Movement-related and resting beta power from both sensorimotor cortices was highly reliable across sessions. Resting beta power yielded highest reliability (average ICC=0.903), followed by MRBD (average ICC=0.886) and PMBR (average ICC=0.663). Notably, peak frequency measures yielded lower ICC values compared to the assessment of spectral power, particularly for movement-related beta activity (ICC=0.386-0.402). Our data highlight that power measures of movement-related beta oscillations are highly reliable, while corresponding peak frequency measures show greater intra-individual variability across sessions. Importantly, our finding that beta power estimates show high intra-individual reliability over time serves to validate the notion that these measures reflect meaningful individual differences that can be utilised in basic research and clinical studies.
منابع مشابه
The lifespan trajectory of neural oscillatory activity in the motor system
Numerous studies connect beta oscillations in the motor cortices to volitional movement, and beta is known to be aberrant in multiple movement disorders. However, the dynamic interplay between these beta oscillations, motor performance, and spontaneous beta power (e.g., during rest) in the motor cortices remains unknown. This study utilized magnetoencephalography (MEG) to investigate these thre...
متن کاملFunctional Movement Screen in Elite Boy Basketball Players: A Reliability Study
Purpose: To investigate the reliability of Functional Movement Screen (FMS) in basketball players. A few studies have compared the reliability of FMS between raters with different experience in athletes. The purpose of this study was to compare the FMS scoring between the beginners and expert raters using video records. Methods: This is a cross-sectional study. The study subjects compris...
متن کاملIntra- and inter-islet synchronization of metabolically driven insulin secretion.
Insulin secretion from pancreatic beta-cells is pulsatile with a period of 5-10 min and is believed to be responsible for plasma insulin oscillations with similar frequency. To observe an overall oscillatory insulin profile it is necessary that the insulin secretion from individual beta-cells is synchronized within islets, and that the population of islets is also synchronized. We have recently...
متن کاملStriatal cholinergic interneurons generate beta and gamma oscillations in the corticostriatal circuit and produce motor deficits.
Cortico-basal ganglia-thalamic (CBT) neural circuits are critical modulators of cognitive and motor function. When compromised, these circuits contribute to neurological and psychiatric disorders, such as Parkinson's disease (PD). In PD, motor deficits correlate with the emergence of exaggerated beta frequency (15-30 Hz) oscillations throughout the CBT network. However, little is known about ho...
متن کاملBeta oscillations reflect changes in motor cortex inhibition in healthy ageing
Beta oscillations are involved in movement and have previously been linked to levels of the inhibitory neurotransmitter GABA. We examined changes in beta oscillations during rest and movement in primary motor cortex (M1). Amplitude and frequency of beta power at rest and movement-related beta desynchronization (MRBD) were measured during a simple unimanual grip task and their relationship with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 147 شماره
صفحات -
تاریخ انتشار 2017